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Abstract
We consider a generalization of the vicious walker model. Using a bijection
map between the path configuration of the non-intersecting random walkers and
the hook Young diagram, we compute the probability concerning the number
of movements of the walker. Applying the saddle point method, we reveal
that the scaling limit gives the Tracy–Widom distribution, which is the same
with the limit distribution of the largest eigenvalues of the Gaussian unitary
ensemble.

PACS numbers: 05.40.Fb, 05.50.+q

1. Introduction

Since it has been shown that the path configuration of the random vicious walkers [1] is related
to the Young tableaux [2–4], much attention has been paid to the statistical combinatorial
problems, which are intimately related with the Young tableaux. Among these are the random
permutation [5], the random word [6], the point process [7, 8], the random growth model
(the polynuclear growth model, oriented digital boiling model) [9, 10], the queuing theory
[11], and so on. It is interesting that the scaling limits of these models have the universality
that the fluctuation is of order N1/3 with the mean being of order N. It is also of interest
that the asymptotic distribution of appropriately scaled variables is described by the Tracy–
Widom distribution, which was originally identified with the limit distribution for the largest
eigenvalue of the Gaussian unitary random matrix [12]; see [13–16] for a review.

In this paper, motivated by results in [17] and conjectures in [18], we introduce a physical
model of the vicious walkers based on the hook Young tableaux. We study the scaling limit
of certain probability, and we clarify a relationship with the Tracy–Widom distribution.

For the convention we use later, we define the (M,N)-hook Schur functions, which are
sometimes called the supersymmetric Schur functions [19] (see also [20–22]), and briefly we
denote some properties of the hook Young tableaux. We set B = B+ � B−, and

B+ = {ε1, . . . , εM } B− = {εM+1, . . . , εM+N }. (1.1)

0305-4470/03/123033+16$30.00 © 2003 IOP Publishing Ltd Printed in the UK 3033
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N

M

Figure 1. The (M,N)-hook Young diagram must be contained in the above ‘hook’ region.

Hereafter we call i the positive (negative) symbol when εi ∈ B+ (εi ∈ B−). We fix an ordering
in B as

ε1 ≺ ε2 ≺ · · · ≺ εM+N. (1.2)

It should be noted that, although we use an ordering (1.2), the following discussion can
be applied for any other choices of ordering with |B+| = M and |B−| = N . For a given
Young diagram λ, the semi-standard Young tableaux (SSYT) T is given by filling a number
1, 2, . . . ,M + N in λ by the following rules:

• the entries in each row are increasing, allowing the repetition of positive symbols, but not
permitting the repetition of negative symbols;

• the entries in each column are increasing, allowing the repetition of negative symbols, but
not permitting the repetition of positive symbols.

We define the weight for the SSYT T as

wt(T ) =
M+N∑
a=1

maεa (1.3)

where ma is the number of a in T. Then the hook Schur function Sλ(x, y) is given by

Sλ(x, y) =
∑

SSYT T of shape λ

ewt(T ). (1.4)

Here we have used{
xi = eεi for εi ∈ B+

yj = eεM+j for εM+j ∈ B−.

The Schur function sλ(x) in usual sense corresponds to a case of B− = ∅ (N = 0), and the
hook Schur function Sλ with B+ = ∅ (M = 0) reduces to the Schur function for the conjugate
partition λ′:

Sλ(x, 0) = sλ(x) Sλ(0, y) = sλ′(y). (1.5)

Due to the rule of filling a number, the Young diagram λ should be contained in the (M,N)-
hook (see figure 1), and we have

Sλ(x, y) =
∑
µ⊂λ

sµ(x)sλ′/µ′(y).

Furthermore, when λ contains the partition (NM), we have

Sλ(x, y) = sµ(x)sν(y)

M∏
i=1

N∏
j=1

(xi + yj )

where the partitions µ and ν are defined from λ by µi = λi −N and νj = λ′
j −M , respectively.
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The Jacobi–Trudi formula helps us to write the hook Schur function as

Sλ(x, y) = det(cλi+j−i )1�i,j��(λ). (1.6)

Here �(λ) is the length of λ, and cn is given by the generating function,

H(t; x)E(t; y) =
∞∑

n=0

cnt
n (1.7)

with

H(t; x) =
∏
j

1

1 − txj

E(t; y) =
∏
j

(1 + tyj ). (1.8)

This paper is organized as follows. In section 2 we introduce a model of vicious walkers
as a generalization of the original model [1]. As far as we know, this model is presented for
the first time in this paper. We define the bijection from path configurations of the vicious
walker to the hook Young diagram. Especially, we show a relationship between the length of
the Young diagram and the number of movements of the first walker. This type of bijection
was first given in [2, 3] for the original vicious walker model. In section 3 we give the
probability of �(λ) � � in terms of the Toeplitz determinant. We further study the scaling
limit of this probability based on the transformation identity from the Toeplitz determinant
to the Fredholm determinant [23–25] in section 4. We apply the saddle point method to the
Fredholm determinant following [10, 26], and we show that the scaling limit coincides with
the Tracy–Widom distribution for the Gaussian unitary ensemble (GUE) [12]. In section 5
we consider some simple examples as a reduction of our model. Both the Meixner and the
Krawtchouk ensembles can be regarded as a reduction of our vicious walker model. The final
section contains our conclusion and discussion. We briefly comment on the random word
related to the hook Young tableaux.

2. Vicious walker

We define a model of the random walkers, which is related to the hook Schur function (1.4).
The model is a generalization of that introduced in [1] and, as clarified later, an algebraic
property of the partition function is nothing but an identity in [17].

The evolution rule of vicious walkers is defined as follows. Initially there are infinitely
many walkers at {. . . ,−2,−1}, and we call each walker Pj whose initial point is −j . A walker
is movable rightward if its right site is vacant. Walkers Pj+1, Pj+2, . . . are called successors
of a walker Pj if they are next to each other in the order of the indices. We consider two types
of time evolution (we assume that there are totally M + N time steps); the first M-steps are
referred to as ‘normal’ time evolution, and the following N-steps are ‘super’ time evolution.
At a ‘normal’ time evolution, a movable walker either stays or moves to its right together with
an arbitrary number of its successors. Thus we draw

move :
��

��
��

�

•

•
stay :

•

•

On the other hand, at a ‘super’ time evolution, a walker can move to its right any number of
lattice units, although Pj cannot over-pass a position of Pj−1 at previous time. To realize this
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Figure 2. Example of path configuration. For t � 3, a process is a ‘normal’ evolution, while for
t � 4 it becomes a super time evolution.

rule and to draw a non-intersecting path, it is convenient to depict this step as follows:

•

•
︸ ︷︷ ︸

arbitrary number of lattice

Each path of the vicious walkers is required not to intersect each other. We see that the original
model of vicious walkers [1] corresponds to a case of N = 0. After M + N time steps, we
denote Lj (n) as the number of right moves made by the walker Pj . Here, n is the total number
of movements of walkers. In figure 2 we give an example of path configuration of vicious
walkers. In this case, we consider in total five time steps (M = 3 and N = 2), and the total
step of right movements is n = 12 with (L1, L2, L3, L4) = (5, 4, 2, 1).

It is now well known for the model of the original vicious walkers [1] that we have
the bijection from the path configuration of vicious walkers to the Young diagram [2]. This
bijection can be easily generalized to our model as follows. For a path configuration (see,
for example, figure 2), we draw Young tableaux λ � n with λ′

j = Lj(n). We insert in
the j th column from the top the times at which the j th particle made a movement to its
right. Notice that, for a super time evolution, we prepare the number of times to be as
many lattice units as the walker has moved. For instance, in the case of figure 2, we
put ‘1 2 4 4 5’ in the first column, as P1 moves two lattice units to the right at time 4.
Thus, the top row is the list of times at which the walkers made their first movement, the
second row is the list of times at which the walkers made their second movement, and
so on. It is clear that the normal time corresponds to the positive symbol B+ while the
super time denotes the negative symbol B− in the SSYT. The evolution rule supports a
consistency with ordering (1.2) in B, and we know that the map is indeed the bijection.
Following this mapping, the path configuration in figure 2 is mapped to SSYT given in
figure 3.

To summarize, we have a one-to-one correspondence between the path configuration and
the SSYT; when n is the total number of moves of the vicious walkers, we have λ � n, and the
number Lj (n) of right movements made by the j th walker is equal to the number of boxes in
the j th column of the SSYT. Especially, the length �(λ) of the partition coincides with L1(n).
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1 2 3 3
2 4 5
4 5
4 5
5

Figure 3. Semi-standard (hook) Young tableaux with entries from B+ = {1, 2, 3} and B− = {4, 5}.

3. Partition function and Toeplitz determinant

In the following, we consider a model where, after a total of n step movements of the right
movers, every walker returns to its initial position by a total of n step left movements [3].
Here the number of normal (super) time evolution is supposed to be M1 (N1) in the first right
moves, while the number of normal (super) time evolution is M2 (N2) in the next left moves
returning to their initial positions. The definition of normal and super time evolution in the left
movers simply follows from that of right movers as a mirror image. Applying the bijection
in the previous section, the path configuration is denoted by pairs of SSYT λ � n: one is
(M1, N1)-hook Young tableaux and the other is (M2, N2)-hook tableaux.

We denote dλ(M,N) as the number of SSYT of shape λ with entries from B+ � B− (with
|B+| = M and |B−| = N). By definition, we have Sλ(t, . . . , t︸ ︷︷ ︸

M

, t, . . . , t︸ ︷︷ ︸
N

) = dλ(M,N)tn for

λ � n, and once the Young diagram λ is fixed the number of SSYT dλ(M,N) corresponds to
the number of path configuration with fixed endpoints of right moves.

We are interested in the probability that the number of right movements of the first walker
P1 is less than �:

Prob(L1 � �). (3.1)

Here the probability ‘Prob’ is defined as follows. We assign the weight t (we set 0 < t < 1) for
every right and left move, and we regard the weight of the total number of n step walks as tn.
Then each configuration of random walk, in which every walker returns to its initial position
after total 2n step, is realized with a probability t2n/Z. An explicit form of the normalization
factor Z will be given later. Based on the bijection map studied in the previous section, we
find that the probability (3.1) is given explicitly by

Prob(L1 � �) = 1

Z

∑
n


 ∑

λ�n

�(λ)��

dλ(M1, N1) dλ(M2, N2)


 t2n. (3.2)

Note that a normalization factor is set to be lim�→∞ Prob(L1 � �) = 1.
To relate this probability to the random matrix theory, we follow a method in [6]. Applying

the Gessel formula to equation (1.6), we have∑
�(λ)��

Sλ(x, y)Sλ(z,w) = 1

�!(2π)�

∫ π

−π

dθ
∏

1�j<k��

|eiθj − eiθk |2

×
�∏

j=1

H(eiθj ; x)E(eiθj ; y)H(e−iθj ; z)E(e−iθj ; w)

= D�(ϕ) (3.3)
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where ϕ(z) is defined by

ϕ(z) =
∏
i,j

1 + yiz
−1

1 − xjz−1

1 + wiz

1 − zjz
. (3.4)

We have used D�(ϕ) as the Toeplitz determinant for the function ϕ(z). D�(ϕ) is the determinant
of the � × � matrix where an (i, j) element is given by ϕi−j with ϕ(z) = ∑

n∈Z
ϕnz

n. We note
that equation (3.3) was also given in [17]. Thus, our model of random walkers corresponds
to a point process in [17], which was introduced as a generalization of [7]. We note that the
strong Szegö limit theorem gives a generalization of the Cauchy formula:

lim
�→∞

D�(ϕ) =
∏

i,j,m,n

(1 + xiwn)(1 + yjzn)

(1 − yjwn)(1 − xizm)
. (3.5)

We now apply a principal specialization ps which sets xi = aqi and yj = bqj [22]. In
general, we have

ps(Sλ(x, y)) = Sλ(aq, aq2, . . . ,︸ ︷︷ ︸
∞

bq, bq2, . . .︸ ︷︷ ︸
∞

) = q
∑�(λ)

i=1 iλi

∏
(i,j)∈λ

a + bqj−i

1 − qλi−j+λ′
j −i+1

and, for a case of λ � n and (M,N)-hook Young diagram, by definition, by setting a = b = t

and q = 1, we have

psa=b=t;q=1(Sλ(x1, . . . , xM, y1, . . . , yN)) = dλ(M,N)tn.

As a result, from equation (3.3) we obtain the partition function as∑
n

∑
�(λ)��

λ�n

dλ(M1, N1)dλ(M2, N2)t
2n = D�(ϕ̃) (3.6)

where

ϕ̃(z) = (1 + tz−1)N1

(1 − tz−1)M1

(1 + tz)N2

(1 − tz)M2
. (3.7)

Due to the strong Szegö limit theorem, we obtain a normalization factor Z as

Z = lim
�→∞

D�(ϕ̃) = (1 + t2)M1N2+M2N1

(1 − t2)M1M2+N1N2
. (3.8)

Combining these results, we obtain

Prob(L1 � �) = 1

Z
D�(ϕ̃). (3.9)

4. Scaling limit

We study the asymptotic behaviour of the probability (3.1). We note that in [18] the property of
the scaling limit was conjectured. For our purpose, it is generally useful to rewrite the Toeplitz
determinant with the Fredholm determinant. In fact, once we know the Toeplitz determinant,
it is possible to rewrite it in terms of the Fredholm determinant [23–25]. Namely we have

D�(ϕ̃) = Z det(1 − K�) (4.1)

where Z is defined in equation (3.8), and K� is the matrix defined by

K�(i, j) =
∞∑

k=0

(ϕ̃−/ϕ̃+)i+�+k+1(ϕ̃+/ϕ̃−)−j−�−k−1. (4.2)
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Here a subscript denotes the Fourier component of the function, and we have used the Wiener–
Hopf factor of ϕ̃, ϕ̃ = ϕ̃+ϕ̃−,

ϕ̃+ = (1 + tz)N2

(1 − tz)M2
ϕ̃− = (1 + tz−1)N1

(1 − tz−1)M1
.

Note that we have set 0 < t < 1. The probability (3.1) is now written by the Fredholm
determinant as

Prob(L1 � �) = det(1 − K�). (4.3)

Using a representation (4.3) in terms of the Fredholm determinant, we study an asymptotic
behaviour by applying the saddle point method following [10, 26]. We consider a limit
Ma,Na → ∞ for a = 1, 2 with fixed values:

M1

N2
= m1

N1

N2
= n1

M2

N2
= m2.

In the Fredholm determinant (4.2), matrix elements are computed as

(ϕ̃+/ϕ̃−)−�−j−k−1 =
∮

dz

2π i

(1 + tz)N2

(1 − tz)M2
· (1 − t/z)M1

(1 + t/z)N1
zj+k+�

(ϕ̃−/ϕ̃+)�+i+k+1 =
∮

dz

2π i

(1 − tz)M2

(1 + tz)N2
· (1 + t/z)N1

(1 − t/z)M1
z−i−k−�−2.

A path of integration in the former integral is chosen in such a way that it surrounds z = −t ,
and that z = 1/t is outside. On the other hand, a path of the latter integral includes both z = 0
and z = t while it excludes z = −1/t . We set

� = cN2 + sN
1
3

2 (4.4)

where c is to be fixed later. For brevity, we define the function σ(z) by

σ(z) = m1 log(t − z) − n1 log(t + z) + log(1 + tz) − m2 log(1 − tz) + (−m1 + n1 + c) log z.

(4.5)

Then the above integrals are given by

(ϕ̃+/ϕ̃−)−�−j−k−1 = (−1)M1

∮
dz

2π i
eN2σ (z)zj+k+sN

1/3
2 ≡ (−1)M1I1

(ϕ̃−/ϕ̃+)�+i+k+1 = (−1)M1

∮
dz

2π i
e−N2σ (z)z−sN

1/3
2 −i−k−2 ≡ (−1)M1I2.

We scale matrix indices as (i, j, k) → (
N

1/3
2 x,N

1/3
2 y,N

1/3
2 w

)
, and we consider applying the

saddle point method to integrals,

I1 =
∫
C

+

dz

2π i
eN2σ (z)zN

1/3
2 (w+y+s) I2 =

∫
C

−

dz

2π i
e−N2σ (z)z−N

1/3
2 (w+x+s)−2

in a limit N2 → ∞. In these integrals, we fix a parameter c in equation (4.4) so that we have
a double saddle point, namely as a solution of a set of equations,

dσ(z)

dz
= d2σ(z)

dz2
= 0



3040 K Hikami and T Imamura

i.e.

m1

1 − z/t
+

1

1 + tz
= c − m2 + 1 +

m2

1 − tz
+

n1

1 + z/t
(4.6a)

m1

(t − z)2
− n1

(t + z)2
= −c − m1 + n1

z2
+

m2t
2

(1 − tz)2
− t2

(1 + tz)2
. (4.6b)

This set of equations is rewritten as

c = t

t − z0
m1 − t

t + z0
n1 − tz0

1 − tz0
m2 − tz0

1 + tz0
(4.7a)

where z0 satisfies

m1

(t − z0)2
+

n1

(t + z0)2
= 1

(1 + tz0)2
+

m2

(1 − tz0)2
. (4.7b)

We see that equation (4.7b) always has a real solution in (−1/t,−t) as far as n1 �= 0 because
lhs–rhs of equation (4.7b) changes from −∞ to ∞ in z ∈ (−1/t,−t). Generally, real
solutions of equation (4.7b) are not only in (−1/t,−t), but to deform paths of integrals
adequately we see that z0 ∈ (−1/t,−t) is a unique candidate of a double saddle point.
For example, in the case of m1 = m2 and n1 = 1, real solutions of equation (4.7b) are
only z = ±1. We can conclude that a double saddle point should be z0 = −1 from
the discussion below. In the case of m1 = n1 � 1 and m2 = 1, real solutions of
equation (4.7b) are in (−1/t,−t), (t, 1/t), (−∞,−1/t), and (1/t,∞) (the latter two solutions
exist only if m1 = n1 � 1/t2), and from the discussion to deform contours we see that only
z0 ∈ (−1/t,−t) is possible as a double saddle point. Based on these cases, it may be natural
to conclude that we choose z0 ∈ (−1/t,−t) as a double saddle point.

Hereafter we set a double saddle point z0 so that z0 ∈ (−1/t,−t), and we fix a parameter
c by equation (4.7a). With z0 ∈ (−1/t,−t), we find that c > 0 from a definition (4.7a). With
this choice of parameters, the fourth-order equation (4.6a) has a real solution z0 of multiplicity
two, and two other solutions are in (−t, t) and (1/t,∞). Around z0, we have the steepest
descend path as in figure 4. As z0 is a double saddle point, paths come into z0 with angles
±π/3 and ±2π/3. Following [10], we denote such paths as C+ and C−, respectively. We see
that the original paths explained above equation (4.4) can be deformed smoothly to contours
C± avoiding their singularities. Furthermore, we have

1

2

d3σ(z)

dz3

∣∣∣∣
z=z0

= t

z2
0

(
t − 2z0

(t − z0)3
m1 +

t + 2z0

(t + z0)3
n1 − 1 − 2tz0

(1 − tz0)3
m2 − 1 + 2tz0

(1 + tz0)3

)

= −z0

1 − tz0

(
1 − t2

(t − z0)3
m1 − 1 + t2

(t + z0)3
n1 +

2t

(1 + tz0)3

)

where in the first equality we have used equation (4.7a) to delete a parameter c, and in the
second equality we have erased m2 using equation (4.7b). Recalling z0 ∈ (−1/t,−t) and
0 < t < 1, we see that

d3σ(z)

dz3

∣∣∣∣
z=z0

> 0 (4.8)

which shows that functions |e±N2σ (z0)| have a maximum value at z = z0 on a contour C±.
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−

z0

C

C

Figure 4. A typical example of the steepest descent path C± is depicted as a bold line. Here we
have set m1 = n1 = m2 = 1, and t = 1/2. A double saddle point is z0 = −1, and other (simple)
saddle points are (25 ± 3

√
41)/16. We see that paths C+ and C− come to a double saddle point

z0 at angles ±π/3 and ±2π/3 respectively, and that another contour comes into (simple) saddle
points with angle ±π/2. A thin line denotes a local structure of the real part of the integrand
around the saddle points.

With these settings, we have from the integral I1 that

N
1/3
2

∫
C

+

dz

2π i
eN2σ (z)zN

1/3
2 (w+y+s)

= N
1/3
2 eN2σ (z0)

∫
C

+

dz

2π i
e

N2
6 σ ′′′(z0)(z−z0)

3
zN

1/3
2 (w+y+s)

= N
1/3
2 z

N
1/3
2 (w+y+s)

0 eN2σ (z0)

∫
C+

dz

2iπ
e

N2
6 σ ′′′(z0)z

3+N
1/3
2

w+y+s

z0
z

= − z
N

1/3
2 (w+y+s)

0 eN2σ (z0)
z0

σ
Ai

(w + y + s

σ

)
.

Here Ai(x) is the Airy function,

Ai(z) =
∫ ∞

−∞

dt

2π
ei(zt+t3/3)

and we have set a parameter σ as

σ = −z0

(
1

2

d3σ(z)

dz3

∣∣∣∣
z=z0

)1/3

. (4.9)

We have σ > 0 from equation (4.8). In the same way, we have from the integral I2 that

N
1/3
2

∫
C

−

dz

2π i
e−N2σ (z)z−N

1/3
2 (w+x+s)−2 = −z

−N
1/3
2 (w+x+s)

0 e−N2σ (z0)
1

z0σ
Ai

(w + x + s

σ

)
.

We then see that the kernel of the Fredholm determinant (4.2) is given by the Airy kernel,

1

σ 2

∫ ∞

0
dw Ai

( s + x + w

σ

)
Ai

( s + y + w

σ

)
= 1

σ

∫ ∞

0
dw Ai

( s + x

σ
+ w

)
Ai

( s + y

σ
+ w

)
.
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Figure 5. Example of the steepest descent path C± for the case of n1 = 0 is depicted. Here we
have set m1 = 4,m2 = 1, and t = 1/2. A double saddle point is z0 = −0.682 54, and there is a
(simple) saddle point at 2.676 84. As in figure 4, paths C+ and C− come to z0 at angles ±π/3 and
±2π/3, respectively. Another contour comes into a (simple) saddle point with angle ±π/2, and it
ends at t. A thin line denotes a local structure of the real part of the integrand around saddle points.

As a result, we obtain

lim
N2→∞

Prob

(
L1 − cN2

σN
1/3
2

� s

)
= F2(s). (4.10)

Here F2(s) is the Tracy–Widom distribution [12] for the scaling limit of the largest eigenvalue
of the Gaussian unitary ensemble, and is defined by

F2(s) = det(1 − KAiry) (4.11)

= exp

(
−

∫ ∞

s

dx(x − s)q(x)2

)
. (4.12)

The second equality is from [12], and q(x) is a solution of the Painlevé II equation,

q ′′ = sq + 2q3 (4.13)

with q(s) → Ai(s) in s → ∞.
A proof of convergence would be performed along the line of [10, 26].
To close this section, we comment on the case of n1 = 0. In this case, we further

suppose that m1/t2 > 1 + m2. With this assumption, we see that there exists a real solution
of equation (4.7b) in (−1/t, 0). By setting this real solution to be z0 ∈ (−1/t, 0), we can
prove from equations (4.7a) and (4.9) that c > 0 and σ > 0. Note that, with this setting of a
parameter c, equation (4.6a) has a real solution z0 of multiplicity two, and another solution is
in (1/t,∞). See figure 5 for an example of the steepest descent path. As a result, we obtain
the Tracy–Widom distribution (4.10) as a scaling limit.
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5. Some special cases

5.1. Meixner ensemble

We consider a case

M1 = M2 = 0 i.e. m1 = m2 = 0.

From the point of view of the random walkers, the vicious walkers move obeying only the
super time evolution rule. In this case, the Toeplitz determinant (3.6) reduces to

D�

((
1 +

t

z

)N1

(1 + tz)N2

)
=

∑
n

∑
�(λ)��

λ�n

dλ′(N1)dλ′(N2)t
2n

=
∑

n

∑
µ1��

µ�n

dµ(N1)dµ(N2)t
2n

where dλ(N) denotes the number of (usual) SSYT, and we have dλ(N) = dλ(N, 0) = dλ′(0, N)

from equation (1.5). The right-hand side (rhs) appeared in [7], and it gives an example of the
discrete orthogonal polynomial ensemble as follows. Using the hook formula [22],

dµ(M) =
∏

1�i<j�M

µi − µj + j − i

j − i
(5.1)

the rhs gives

∑
n

∑
µ1��

µ�n


 ∏

1�i<j�N2

[
µi − µj + j − i

j − i

]2

·

 N2∏

i=1


 N1∏

j=N2−1

µi + j − i

j − i


 t2µi







where we have assumed N1 � N2. Introducing

hj = µj + N2 − j (5.2)

we obtain

Prob(L1 � �) = (1 − t2)N1N2 t−N2(N2−1)


N2−1∏

j=0

(N1 − N2)!

j !(N1 − N2 + j)!




×
∑

h∈N
N2

max{hi}��+N2−1


 ∏

1�i<j�N2

(hi − hj )
2


 N2∏

i=1

(
N1 − N2 + hi

hi

)
t2hi (5.3)

which is called the Meixner ensemble.
In fact, using the Borodin–Okounkov identity (4.2), the kernel of the Fredholm

determinant can be written in terms of the Meixner polynomial

(i − j)K(i, j) = t4N2+i+j (1 − t2)N1−N2−1

(
N1 + j

N2 + j

)
·
(

N1

N2

)
· (−N2)

×(MN2(i + N2; N1 − N2 + 1, t2) · MN2−1(j + N2; N1 − N2 + 1, t2)

− MN2−1(i + N2; N1 − N2 + 1, t2) · MN2(j + N2; N1 − N2 + 1, t2)) (5.4)

which has a well-known form of the correlation functions of the random matrix (see, for
example, [27]). Note that the Meixner polynomial is defined by

Mn(x; b, c) = 2F1

(−n,−x

b
; 1 − 1

c

)
.
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A computation of the scaling limit can be done by the method in section 4. A double
saddle point, z0 ∈ (−1/t,−t), is explicitly solved as

z0 = − t +
√

n1

1 + t
√

n1

and we obtain the Tracy–Widom distribution (4.10) with parameters c and σ defined by

c = t (2
√

n1 + (n1 + 1)t)

1 − t2
(5.5)

σ = t1/3(
√

n1 + t)2/3(1 + t
√

n1)
2/3

n
1/6
1 (1 − t2)

. (5.6)

This result was derived by using the asymptotics of the Meixner polynomial in [7] (see
also [28]).

5.2. Krawtchouk ensemble

We set

N1 = M2 = 0 i.e. n1 = m2 = 0 (5.7)

The vicious walkers obey a rule of normal time evolution in moving right, while they obey a
rule of super time evolution in moving left. In this case, equation (3.6) is read as

D�

(
(1 + tz)N2(
1 − t

z

)M1

)
=

∑
n

∑
�(λ)��

λ�n

dλ(M1)dλ′(N2)t
2n.

This becomes the Krawtchouk ensemble [29] as follows (this type of the Toeplitz determinant
was also studied in [10]). When we substitute the hook formula (5.1) into the above expression,
we see that the rhs reduces to
N2−1∏

j=0

(M1 + j)!

j !


 ∑

n

∑
µ1��

µ�n


 ∏

1�i<j�N2

(µi − µj + j − i)2




×
N2∏
j=1

t2µj

(µj + N2 − j)!(M1 + j − 1 − µj)!
.

By use of

hj = µj + N2 − j

this gives

Prob(L1 � �) = (1 + t2)−M1N2 t−N2(N2−1)


N2−1∏

j=0

(M1 + j)!

j !(N2 + M1 − 1)!




×
∑

h∈N
N2

max{hi}��+N2−1


 ∏

1�i<j�N2

(hi − hj )
2


 N2∏

i=1

(
M1 + N2 − 1

hi

)
t2hi (5.8)

which is the Krawtchouk ensemble.
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The kernel of the Fredholm determinant is computed explicitly from equation (4.2), and
it is given in terms of the Krawtchouk polynomial as a form of the correlation functions:

(i − j)K(i, j) = − t i+j+4N2

(1 + t2)M1+N2
(M1 + N2 − 1)

(
M1 + N2 − 1

M1 − 1

)
·
(

M1 + N2 − 1
N2 + j

)

×
(

KN2

(
i + N2; t2

1 + t2
,M1 + N2 − 1

)

×KN2−1

(
j + N2; t2

1 + t2
,M1 + N2 − 1

)

− KN2−1

(
i + N2; t2

1 + t2
,M1 + N2 − 1

)

× KN2

(
j + N2; t2

1 + t2
,M1 + N2 − 1

))
. (5.9)

Here the Krawtchouk polynomial is defined by

Kn(x; p,N) = 2F1

(−n,−x

−N
; 1

p

)
.

We note that we have

Kn(x; p,N) = Mn

(
x; −N,

p

p − 1

)
.

The scaling limit is also computed by the saddle point method [10]. In this case we
suppose m1 > t2, and we have a double saddle point z0 ∈ (−1/t, 0) as

z0 = −√
m1 + t

1 + t
√

m1
.

We obtain the Tracy–Widom distribution (4.10) where parameters c and σ are defined from
equations (4.7a) and (4.9) as

c = t (2
√

m1 + (m1 − 1)t)

1 + t2
(5.10)

σ = t1/3(
√

m1 − t)2/3(1 + t
√

m1)
2/3

m
1/6
1 (1 + t2)

. (5.11)

We see that this result coincides with that of [29] derived by use of asymptotics of the
Krawtchouk polynomial.

5.3. Symmetric case

We consider a case

M1 = M2 N1 = N2 i.e. m1 = m2 = m n1 = 1 (5.12)

namely in right and left movements we have an equal number of normal and super time
evolutions. Unfortunately, we are not sure whether this model is related to the discrete
orthogonal ensemble, but the parameters of the scaling function can be simply solved as
follows.

In a scaling limit N2 → ∞, we obtain the Tracy–Widom distribution (4.10) by applying
the saddle point method. In this case, a double saddle point is z0 = −1, and parameters in
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equation (4.10) are computed from equations (4.7a) and (4.9) as

c = 2t (1 + m + (1 − m)t)

1 − t2
(5.13)

σ = t1/3(m(1 − t)4 + (1 + t)4)1/3

1 − t2
. (5.14)

6. Conclusion and discussion

We have introduced a generalization of the vicious walker model in [1]. We find that there
exists a bijection map between the path configuration of vicious walkers and the hook Young
diagram as in the case of the original vicious walkers. We have exactly computed a probability
that the number of right movements of the first walker is less than �, and we have given a
formula in terms of the Toeplitz determinant. We have further studied a scaling limit of the
probability based on the Borodin–Okounkov identity which relates the Toeplitz determinant
with the Fredholm determinant, and we have obtained the Tracy–Widom distribution for the
largest eigenvalue of the Gaussian unitary random matrix. Other models which belong to the
orthogonal or the symplectic universality classes are for future studies.

In the case of the vicious walker model, the crucial point is that there exists the bijection
map from the path configuration to a pair of the semi-standard (hook) Young tableaux. As
has been well studied [6], a pair of SSYT and the standard tableaux are related to the problem
of the random word. We can define the model of the random word, which is related to the
hook Young diagram as follows [30]. We consider a random word by choosing from a set
B+ � B− with B+ = {1, . . . ,M} and B− = {M + 1, . . . ,M + N}. When a word of length n
is given, we have a generalization of the Robinson–Schensted–Knuth (RSK) correspondence
[31, 32] (see also [33] for invariance under ordering of symbols); we have a bijection between
a word of length n and pairs (P,Q) of tableaux of the same shape λ � n (P is SSYT from
B, and the recording tableaux Q is the standard Young tableaux). The rule to construct pairs
of tableaux is essentially the same with the original RSK correspondence (see, for example,
[21, 22]), and the difference is only that negative symbols can bump together while positive
symbols cannot. Then for a random word with length n, the probability that the length of
the longest decreasing (strictly decreasing for positive symbols while weakly decreasing for
negative symbols) subsequence is less than or equal to � is then given by∑

�(λ)��

λ�n

dλ(M,N)f λ (6.1)

where f λ is the number of standard Young tableaux.
This can be rewritten in terms of the Toeplitz determinant based on equation (3.3). We

use the exponential specialization [22],

ex(pn) = tδ1,n (6.2)

where the power sum symmetric function pn is given by

pn(x, y) =
∑

i

xn
i + (−1)n−1

∑
j

yn
j

Acting on the hook Schur function, we have

ex(Sλ(x, y)) = f λ tn

n!
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for λ � n. By applying the exponential specialization to (x, y) and the principal specialization
psa=b=t;q=1 to (z,w) in equation (3.3), we obtain

∑
n


 ∑

�(λ)��

λ�n

dλ(M,N)f λ


 tn

n!
= D�(
) (6.3)

where


(z) = et/z (1 + z)M

(1 − z)N
. (6.4)

As a consequence, the Poisson generating function of the probability (6.1) is given by the
Toeplitz determinant of function 
. As seen from the fact that the kernel (6.4) can be given
from equation (3.7) as an appropriate limit, the scaling limit of equation. (6.3) reduces to
the Tracy–Widom distribution, as was shown in [16] for a case of N = 0. Details will be
discussed elsewhere.

It was shown in [6] that the generating function (6.3) with N = 0 has an integral
representation in terms of solutions of the Painlevé V equation. It remains for future studies
to clarify a relationship between the Toeplitz determinant (6.3) in a case of N �= 0 and the
Painlevé equations, especially the integral solutions of the Painlevé equation given in [34].

Note added: After submitting this paper, Tracy and Widom [35] appeared on the Internet. Therein, a limit theorem
of the ‘shifted Schur measure’ was studied, where the probability is defined in terms of the Schur Q-functions [20].
To apply a method of [10], they obtained the Fredholm determinant after a finite perturbation of a product of Hankel
operator, but their main result on a scaling limit exactly coincides with our results (4.10) with M1 = N1 and M2 = N2
(subsequently we see that their result for τ = 1 coincides with our above results (5.13)–(5.14) with m = 1). This
coincidence may originate from a property of the Schur Q-function. The Schur Q-function is defined by filling
‘marked’ and ‘unmarked’ positive integers to the shifted Young diagram; a rule of filling these numbers is much the
same as a rule for the semi-standard hook Young tableaux explained in the introduction, once we identify unmarked
(marked) numbers with positive (negative) symbols. It will be interesting to investigate this connection in detail.
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